TMC PULSE

Sept 2015 Pulse

Issue link: https://tmcpulse.uberflip.com/i/564353

Contents of this Issue

Navigation

Page 20 of 43

t m c » p u l s e | s e p t e m b e r 2 0 1 5 19 impact of personalized medicine approaches and developing therapeutics. Unlike single-gene pediatric disorders and cancer, however, the argument for genetic testing for adult familial diseases (think cardiovascular, neurodegenerative or metabolic) has yet to catch on in the clinical world. The fact that these diseases run in families indicates that there is a clear genetic component, but because the majority of these conditions are caused by something more complex than a single-gene mutation, the challenge is determining all the genetic risk factors and other causative elements that contribute to these "traits," or put more appropriately, predispositions for developing the conditions. "We're kind of at a threshold moment right now," said Gibbs. "If you look at the value of a genomic test for a particular class of adult disorders at this time, one could argue that its value and immediate clinical impact is minimal. But, if you sequence the whole person and the whole family and you add up the value you'd get for examining any potential adult conditions, plus the value you'd get for prediction of any possible childhood problems, then in aggregate you could easily justify the test." The problem, explained Gibbs, is that the structure of medical care is currently centered on acute treatment rather than evaluation of whole family health as a predictor for disease. Nevertheless, he believes the universal benefit of genetic data will become apparent soon enough. "Through this data, we're understanding targets better, we're understanding genetic processes, genetic chemistry and the biology better, and we're understanding what to look for and what to test for when you screen drug compounds," said Gibbs. "We have this global mission and vision that ultimately, every person who has any health issue should have a genome sequence as part of their work-up, just as they would have an X-ray or metabolite test." As with any goal of such mammoth proportions, it will take teamwork to get there. To help facilitate the collaboration required, member institutions of the Texas Medical Center, including Baylor, are coming together to set up a TMC Genomics Institute with the objective of being the world's most innovative genomics center for discovery and disease intervention. "We really want to see more integration of different programs in the medical center in general, and genomics is the perfect vehicle for it," said Gibbs. "That's the reality. In the past, we've centralized the genomics activity and it's been very expensive and has been mainly discovery-based, so it hasn't lent itself for such integration. But as we move towards these clinical arenas, there's more opportunity for collaboration and to synergize our expertise, whether it's in the lab or the clinic." The possibilities for clinical genomics to transform the world in which we live are as vast as the potential combinations of base pairs in human DNA. And although the focus now is on treating cancer, creating therapies for incurable diseases, developing lifesaving drugs to combat deadly viruses, and helping families understand hereditary risks of reproduction, no one can really predict how it will all come together. "We are all inclined to be conservative in our future projections and we invariably just make fairly modest, linear projections," said Gibbs. "When the computer was first introduced, most people just thought about the ability to type more documents, not all of the other really innovative developments like Internet commerce and video gaming, or the fact that we now carry all of this around in our pockets. It's the same with genetics—we don't know where it will take us, but we have every reason to be extremely optimistic about it." BAYLOR MIRACA GENETICS LABORATORIES In the fall of 2014, Baylor College of Medicine and Miraca Holdings, Inc., a Japan-based international health care company focused on clinical diagnostics and laboratory tests, announced a joint venture in which the two institutions would share ownership and governance of their clinical genetics diagnostic laboratories. The Texas Medical Center- based venture, named Baylor Miraca Genetics Laboratories, allowed Baylor to continue to independently drive its genetic diagnostic research agenda while expanding their laboratory diagnostic skills into a larger commercial enterprise. Hoping to play a major role in Houston's budding biotech industry, the marriage of Baylor's academic expertise and Miraca's international business acumen has already proven successful: in May, the organizations announced the launch of an enhanced clinical exome sequencing test, providing physicians the option to speed up the delivery of final results to two-to-three weeks from three months. Baylor College of Medicine pioneered the research and development of the original whole exome sequencing test, initially launching it for clinical use in 2011. to date. to complete. It is the THE H UM A N GENOME PROJ ECT T H I R T E E N Y E A R S W A S L A U N C H E D I N 1 9 9 0 C O L L A B O R AT I V E B I O L O G I C A L P R O J E C T WOR LD 'S L A RGEST and took

Articles in this issue

view archives of TMC PULSE - Sept 2015 Pulse